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Summary: Blood Leishmania parasite load, determined by qPCR, is a promising early biomarker to 

predict relapse in visceral leishmaniasis patients and might particularly be useful in the context of 

dose finding studies of new chemical entities. 
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ABSTRACT 

Background In order to expedite the development of new oral treatment regimens for visceral 

leishmaniasis (VL), there is a need for early markers to evaluate treatment response and predict long-

term outcomes.  

Methods Data from three clinical trials were combined in this study, where Eastern African VL 

patients received various antileishmanial therapies. Leishmania kinetoplast DNA was quantified in 

whole blood with real-time quantitative PCR (qPCR) before, during and up to six months after 

treatment. The predictive performance of pharmacodynamic parameters for clinical relapse was 

evaluated using receiver-operating characteristic curves. Clinical trial simulations were performed to 

determine the power associated with the use of blood parasite load as a surrogate endpoint to predict 

clinical outcome at six months.  

Results  The absolute parasite density on day 56 after start of treatment was found to be 

a highly sensitive predictor of relapse within six months of follow-up at a cut-off of 20 parasites/mL 

(AUC 0.92, specificity 0.91, sensitivity 0.89). Blood parasite loads correlated well with tissue parasite 

loads ( = 0.80) and with microscopy gradings of bone marrow and spleen aspirate smears. Clinical 

trial simulations indicated a >80% power to detect a difference in cure rate between treatment 

regimens if this difference was high (>50%) and when minimally 30 patients were included per 

regimen. 

Conclusion Blood Leishmania parasite load determined by qPCR is a promising early biomarker 

to predict relapse in VL patients. Once optimized, it might be useful in dose finding studies of new 

chemical entities.  
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1. INTRODUCTION 

There is an urgent need to develop field-adapted oral efficacious treatments for the neglected 

tropical parasitic disease visceral leishmaniasis (VL), particularly in Eastern Africa. New candidates 

with different mechanisms of action have been identified and are progressing to clinical development 

[1]. To facilitate drug development, accurate tools are needed to evaluate treatment efficacy early 

after the treatment, which is a specific research priority for neglected tropical diseases according to 

the World Health Organization (WHO) [2,3]. This will allow early selection of promising drug 

regimens and will reduce the number of subjects exposed to regimens with poor efficacy.    

 Treatment evaluation is complicated, since initially cured patients can relapse due to 

recrudescence of parasites, which is a long-term event that is particularly difficult to predict [4]. 

Therefore, definitive cure in Eastern African VL clinical trials is generally assessed at six months 

after completion of treatment, defined as a negative parasitological test of cure at the end of treatment 

(absence of Leishmania amastigotes in spleen or bone marrow aspirate smears by microscopy), lack 

of VL clinical symptoms and no requirement for rescue treatment during 6 months follow-up. To 

speed up treatment evaluation, sensitive and specific biomarkers are needed to monitor treatment 

response and predict relapses. These biomarkers would be particularly useful in clinical trials with 

new chemical entities, where they could serve as a surrogate endpoint at an early time point after 

treatment.  

 Splenic aspiration is an invasive procedure, associated with risk of severe hemorrhage [5,6], 

and cannot be performed in patients with unpalpable or reduced spleen size at the end of treatment. 

Quantification of blood parasite load by real-time quantitative PCR (qPCR) can be an alternative: 

previous results suggest that positive blood parasite load after treatment is associated with a higher 

risk of VL relapse [7–19]. In HIV co-infected patients, blood parasite load >10 parasites/mL preceded 

clinical relapse [7]. However, risk of VL relapse in HIV co-infection is affected by other factors such 

as CD4 count [11]. In Eastern Africa, the region with the highest VL incidence globally, very limited 

Leishmania qPCR data has been published in the context of VL [20,21]; only a small study in 11 

patients focused on the relation with clinical outcome [19].  

To evaluate the pharmacodynamic potential of blood parasite load as a predictor for clinical 

relapse, we longitudinally quantified the blood parasite load using qPCR in patients from three 

multicenter Eastern African clinical trials. The first objective was to identify the most optimal 

predictor for VL treatment outcome at six months in terms of absolute or relative blood parasite load 

and time of sampling. Secondly, blood parasite loads were compared with tissue aspirate parasite 

loads to assess whether the parasite biomass in whole blood is reflecting that in the primary infected 

organs. Thirdly, the sensitivity of blood and tissue qPCR parasite loads were compared with 

microscopic readings of tissue samples. Lastly, the predictive power was quantified for different 

clinical trial scenarios with variable efficacy rates where this pharmacodynamic marker could 

hypothetically be used as early surrogate endpoint.  

2. METHODS 

2.1 Study sites and patients  

Data originated from three Phase II open-label randomized clinical trials, to assess the safety and 

efficacy of different treatment regimens in the treatment of VL in Eastern Africa: LEAP0208 

(NCT01067443 [21]); LEAP0714 (NCT02431143 [22]); and FEXI VL 001 (NCT01980199). Ethical 

approval was obtained from national and local Ethics Committees in Kenya, Sudan, and Uganda. 

Further patient and treatment details can be found in the Supplementary Material.  
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2.2 Clinical assessment of efficacy and sample collection 

An initial cure was defined by improvement of clinical signs and symptoms of VL and a negative 

parasitological test of cure by microscopy at day 28. Patients who died or required rescue treatment 

before completion of study treatment were considered initial treatment failures. A definitive cure at 

day 210 (6 months) was defined as a patient who had initial cure and remained free of VL signs and 

symptoms, i.e., no occurrence of relapse during the follow-up period and no requirement for rescue 

treatment. 

 Microscopic parasitological assessments on aspirate smears from lymph node, bone marrow, 

or spleen (LEAP0208 and FEXI VL 001), or spleen or bone marrow (LEAP0714) were performed at 

baseline and on day 28 in all studies; it was repeated at day 56, day 210 or in an unscheduled visit if 

clinically indicated, due to reappearance of VL signs and symptoms, suspecting of relapse. In 

LEAP0714 and FEXI VL 001, part of the tissue aspirate samples intended for microscopy were also 

collected to perform qPCR. Whole blood EDTA samples with a volume of 200 µL were collected for 

pharmacodynamic assessment prior to treatment and nominally on day 3, 7, 14, 28, 56, 210 

(LEAP0208), on day 3, 7, 14, 21, 28, 56 (LEAP0714), and on day 1, 3, 5, 8, 11, 14, 28, 56, 210 (FEXI 

VL 001).  

 

2.3 Microscopy and molecular methods 

Parasitological assessments in the studies were adapted according to the practice of tissue aspiration 

(spleen, bone marrow and lymph node) for VL diagnosis in the different countries. In LEAP0208, 

parasitological assessment by microscopy was done on lymph node aspirates (Dooka, Kassab), spleen 

aspirates (Kimalel) or bone marrow aspirates (all sites). In LEAP0714, spleen aspirates were collected 

or, under specific circumstances (see [22]), bone marrow aspirates. In FEXI VL 001, lymph node or 

bone marrow samples were collected. Aspirates were smeared on two slides per sample, stained with 

Giemsa and graded on a semi-quantitative logarithmic scale from 0 (no parasites in 1000 microscopic 

fields) to 6+ (>100 parasites per microscopic field). Measurements of the Leishmania parasite load in 

whole blood samples and tissue samples were performed using a qPCR method targeting Leishmania 

kinetoplastid DNA (kDNA). A detailed description of the DNA extraction, used primers, and qPCR 

protocol can be found in the Supplementary Material.  

 

2.4 Data and statistical analysis  

Data cleaning, statistical analysis, and clinical trial simulations were performed with R (version 

3.5.1). qPCR data were excluded from the analysis for patients who were considered initial treatment 

failures, for samples collected after rescue treatment was given, or for samples considered unreliable. 

Absolute blood parasite concentrations and relative changes over time were evaluated for their ability 

to discriminate between cured and relapsed patients. Absolute and log-transformed data were checked 

for normality and equal variances using the Shapiro-Wilk test. Logistic regression was performed by 

an unpaired one-sided Wilcoxon signed rank test to compare blood parasite loads at baseline, day 28, 

and day 56 after start of treatment. Subsequently, receiver-operating characteristic (ROC) curves were 

generated with the R package “pROC” and “plotROC”. The area under the curve (AUC) was 

compared to find the most predictive parameter for clinical relapse in terms of follow-up day (day 14, 

day 28, or day 56 after start of treatment), and absolute parasite load or relative to baseline. 

Furthermore, the interplay between sensitivity and specificity of blood parasite load as a biomarker 

was evaluated and the optimal cut-off value was determined.  

 To evaluate the correlation between blood parasite load and tissue parasite load obtained by 

qPCR, Spearman’s rank correlation rho was determined. The relationship between the two sources 

was determined by linear regression on log-transformed data, excluding data below the limit of 

quantitation (BLQ). The correlation between available matched qPCR blood and tissue loads and 
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microscopy gradings of aspirate smears was evaluated visually. To evaluate the sensitivity of the 

qPCR and microscopy method, the percentage of samples having detectable parasites was compared.  

 

2.5 Surrogate endpoint evaluation 

Finally, clinical trial simulations were performed to evaluate the predictive performance and 

power associated with the use of qPCR blood parasite load on either day 28 or day 56 as a surrogate 

endpoint to predict final clinical outcome at six months. For this we used non-inferiority clinical trial 

scenarios where a control treatment arm (90% cure rate at six months), representing current standard 

of care [1], was compared to an alternative treatment arm with lower, varying, cure rates (20%, 40%, 

60%, and 80%). Patient populations (n = 10, 20, 30, 40, 50) were sampled with replacement from the 

pool of cured (n = 143/147) and relapsed (n = 30/32) patients on day 28/56 in our original dataset. 

While the actual cure rate was pre-defined, the predicted cure rate of both populations was derived 

based on blood parasite load at day 28 or 56, based on the optimal cut-off. To simulate the 

performance of the qPCR procedure realistically, previously excluded and missing samples were 

included in these simulations. Fisher’s exact test was used to test if these populations had significantly 

different predicted cure rates, based on blood parasite load. Per scenario, 1000 clinical trials were 

simulated. The power was defined as the number of times a significant difference was found between 

treatment arms and was considered adequate when >80%.  

3. RESULTS 

In total, blood parasite loads were available from 177 patients, (n = 134 for LEAP0208, n = 29 for 

LEAP0714, n = 14 for FEXI-VL-001), treated with 5 different treatment regimens. Overall, 15.8% of 

blood and 16.3% of tissue qPCR data had to be excluded (Table 1). Main reasons for exclusion of 

data were an unreliable or incomplete DNA extraction of the sample (based on glyceraldehyde 3-

phosphate dehydrogenase (GAPDH)), bad sample quality, or insufficient sample material. None of the 

microscopic readings were excluded.  

A difference in blood parasite load dynamics between cured and relapsed patients could be 

observed in all treatment groups (Figure 1). In total, cured patients had a significantly lower parasite 

load  on day 28 (p = 3.91
-06

) and on day 56 (p = 2.58
-14

) (Table 2). Remarkably, cured patients also 

had a significantly lower baseline parasite load (p = 0.030). This correlation has been demonstrated 

earlier for tissue baseline parasite loads detected by microscopy in HIV co-infected patients [23]. 

Baseline parasite loads were not significantly different between treatment groups. 

The ROC AUC for absolute blood parasite load classifying clinical relapse (Figure 2) was 

highest on day 56 (0.92), compared to day 14 (0.71) and day 28 (0.74). The optimal cut-off value on 

day 56 was 20 p/mL, corresponding to a sensitivity of 89% and a specificity of 91%. ROC curves of 

relative parasite load at day 14, 28, or 56 in relation to baseline were also evaluated, resulting in 

comparable AUCs (0.93 on day 56), and thus the absolute parasite load was preferred since only a 

single sample is needed. Based on a threshold of 20 p/mL on day 56, 67.6% of patients in this study 

were correctly categorized as relapsed for day 210 outcome, taking into account missing samples to 

evaluate the overall performance of the sampling procedure, extraction, and qPCR method. Without 

missing samples, 85.2% of patients were correctly categorized as relapsed, representing the 

performance of the qPCR method. Relapsed patients not predicted at day 56 relapsed at day 68, 86, 

108, and 112, whereas correctly predicted relapsed patients relapsed at day 102 (median) (IQR 64.5-

136.5).  

There was a significant correlation between matching log-transformed blood and tissue qPCR 

results (ρ = 0.80), indicating an approximately 2 log higher parasite load in spleen, bone marrow, or 

lymph node compared to whole blood (Figure 3). In total, 302 blood qPCR samples and 71 tissue 

qPCR samples were compared to matching microscopy gradings of tissue aspirate smears (Figure 4 

and 5). When stratified by tissue source, there was a positive trend between the two scores, especially 
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in samples from bone marrow and spleen. At start of treatment, parasites were detectable by 

microscopy in all tissue samples (microscopy grading >0), whereas 6% of matching blood qPCR 

samples were negative (Table 3). When no parasites were detected by microscopy on day 28 , 

parasites were still detected by qPCR in 36% of blood  samples (Table 3). Parasites were detectable 

by qPCR in all of the available tissue samples (data not shown).  

In the clinical trial simulations, absolute blood parasite load on either day 28 or day 56 was evaluated 

as a surrogate endpoint to predict clinical cure for various treatment regimens, with a threshold of ≤20 

p/mL based on the ROC curves. The power of different simulation scenarios is shown in Figure 6. 

Clinical trial simulations demonstrated that the power to detect a difference in cure rate was higher 

when blood parasite load on day 56 was used, instead of day 28, in accordance with the ROC curves. 

When blood parasite load on day 56 was used, clinical trials only achieved a >80% power  when the 

difference in cure rate was high (>50%) between the hypothetical investigational regimen and a 

standard of care regimen with an efficacy of 90%, and when sufficient patients were included. For 

example, to identify an insufficient treatment regimen with 40% cure rate, at least 30 patients per 

treatment regimen need to be included. For alternative treatment regimens with higher cure rates, no 

adequate power was achieved with a sample size ≤50 subjects per treatment regimen. 

4. DISCUSSION 

In this study, various parasitemia parameters were evaluated for their sensitivity and 

specificity in classifying and predicting final treatment outcome in a large Eastern African VL patient 

population. Absolute parasite load on day 56 was a highly sensitive predictor of relapse at a cut-off of 

20 p/mL. When compared to other approaches, the surrogate marker can be assessed early (day 56 

instead of 6 months) compared to IgG1 antigen detection [24] and more specific compared to antigen 

detection in urine [25]. The low cut-off value found in this study indicates that blood parasite loads as 

low as 20 p/mL are associated with a higher risk of disease relapse, even when patients do not yet 

present reoccurrence of clinical symptoms.  Previously this has only been demonstrated in HIV co-

infected patients, where values ranging from 0.03 – 42 p/mL indicated relapse[7,17,18,26].   

A potential drawback of this biomarker is that blood represents only a proximal site for the 

total parasite biomass in the human host, of which the mainstay is resident in infected organs (e.g. 

liver, spleen and bone marrow). This is in line with our findings, as qPCR was approximately 2-log 

higher in tissue compared to whole blood. Another potential source of bias might be lingering kDNA 

of dead parasites in the circulation. However, a rapid clearance of circulating Leishmania kDNA 

immediately after treatment initiation has been shown previously, following clinical recovery [13]. 

Additionally, qPCR blood parasite load showed a good correlation with qPCR parasite load in tissue 

( = 0.80), indicating that whole blood is a good proxy compartment to monitor the parasite biomass 

in the infected tissues. 

qPCR has been shown to be a sensitive method to measure blood parasite load previously 

[16,18,19,27,28], as well as in this study. Both blood and tissue qPCR parasite loads showed a 

correlation with microscopy gradings from aspirate smears; the clearest trend was observed between 

spleen qPCR and microscopy gradings. The observed correlation is in line with previous data from 

India [29]. qPCR analysis seems to be a more sensitive method, as parasites were detectable by qPCR 

in all tissue samples and in 76.7% of blood samples, compared to 60.5% of tissue samples by 

microscopy. The high sensitivity of qPCR on whole blood, as well as the convenience for the patient, 

suggest that qPCR is a suitable method for regular patient monitoring. Noteworthy, detectable qPCR 

blood or tissue parasite loads at end of treatment or during follow-up were observed in patients 

considered clinically cured. This could indicate that patients can still harbor Leishmania parasites at 

low levels, but nevertheless remain asymptomatic. In the context of a clinical trial this means negative 

blood qPCR loads cannot replace the gold standard of microscopic examination as a test of cure to 
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define initial cure and the clinical value of a positive qPCR in a patient without clinical signs and 

symptoms of disease remains to be defined. It could indicate the need for closer follow-up but not 

directly rescue treatment, as for an immunocompetent patient the immune system is expected to 

control the infection, conferring long-lasting protection [30,31].  

To evaluate the usefulness of early blood parasite load as a surrogate endpoint for long-term 

clinical outcome in clinical trials evaluating novel drug regimens, clinical trial simulations were 

performed. The use of blood parasite load on day 56 might be suitable to identify insufficient 

treatment regimens or dose levels with a very poor cure rate of 40% or less and stop early for futility. 

However, the power will improve when the number of excluded samples can be reduced, e.g. by 

improving the performance of DNA extraction.  

 With the introduction of new chemical entities as clinical candidates for VL treatment, there 

is a need for better and more accurate tools to evaluate their efficacy at early time-points, as to allow 

for adaptive study design to select promising drug regimens and reduce the number of subjects 

exposed to regimens with poor activity. This is the first study that evaluated the predictive value of 

qPCR for long-term clinical outcome and its use as a surrogate endpoint in clinical trials for VL, by 

using a large dataset from different studies in Eastern African VL patients, including treatment 

regimens with different cure rates. The absolute parasite load on day 56 was a highly sensitive 

predictor of relapse at a cut-off of 20 p/mL, and its potential application has been shown by clinical 

trial simulations. However, this cut-off value is based on the studied data only, and the exact threshold 

and time-point may need to be optimized for future compounds, depending on their pharmacokinetic 

properties, treatment duration, and ultimately their effect on parasite dynamics. With the increase in 

molecular biology capacity in areas endemic for VL, we expect that it would be feasible to put this 

tool into practice in clinical trial settings. In the near future, validation of molecular biology tools in 

blood could be envisaged to replace the current invasive tissue aspiration procedures for 

parasitological diagnosis and treatment monitoring.  
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TABLES 

Table 1: Overview of the data used for logistic regression (Day 0, 28, 56) and ROC analysis (Day 14, 

28, 56), specifying collected and excluded qPCR blood samples, qPCR tissue samples and 

microscopy scores derived from splenic or bone marrow aspirates. 

 

Blood qPCR Tissue qPCR Microscopy score 

Day Study 

Collected 

samples 

Excluded 

samples (%) 

Collected 

samples 

Excluded 

samples (%) Available readings 

0 LEAP0208 131 14 (11) N/A N/A 131 

 

LEAP0714 30 13 (43) 30  0 (0) 30 

 

FEXI VL 001 14 5 (36) 10  0 (0) 14 

 

Total 175 32 (18) 40 0 (0) 174 

14 LEAP0208 139 18 (13) N/A N/A N/A  

 

LEAP0714 30 12 (40) N/A N/A N/A 

 

FEXI VL 001 14 5 (36) N/A N/A N/A 

 

Total 183 35 (19) N/A N/A N/A 

28 LEAP0208 130 13 (10) N/A N/A 126 

 

LEAP0714 29 5 (17) 29 7 (24) 28 

 

FEXI VL 001 14 5 (36) 13 5 (38) 14 

 

Total 173 23 (13) 42 12 (29) 168 

56 LEAP0208 136 12 (9) N/A N/A 8 

 

LEAP0714 29 2 (7) 1 0 (0) 1 

 

FEXI VL 001 13 4 (31) 4 1 (25) N/A 

 

Total 178 18 (10) 5 1 (20) 9 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/cid/advance-article/doi/10.1093/cid/ciab124/6134305 by guest on 14 April 2021



 

 

Table 2: Blood parasite loads quantified by qPCR at baseline, day 28, and day 56, stratified by clinical 

outcome at 6 months follow-up.  

Day Total Cure 

 

Relapse 

 

Difference 

  N  N  Parasites/mL
a
 N Parasites/mL

a
 p-value

b
 

0 143 117 3070 (720-16290) 26 9760 (2574-63195) 0.030* 

28 150 123 0 (0-1.5) 27 20 (0-230) 3.91e-06* 

56 156 130 0 (0-2.75) 26 270 (59.2-1242) 2.58e-14* 

 

a
Values are given as median (inter-quartile range). 

b
Wilcoxon test on absolute parasite concentrations. 

* Significant difference when p<0.05. 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/cid/advance-article/doi/10.1093/cid/ciab124/6134305 by guest on 14 April 2021



 

 

Table 3: Number (%) of positive and negative blood qPCR loads versus microscopy gradings for 

matching samples at day 0 (N = 143) and day 28 (N = 135). Microscopy gradings >0 were considered 

positive. 

 Day 0 Day 28 

  Microscopy grading Microscopy grading 

  Positive  Negative Positive  Negative 

Total (N) 143 0 10 135 

Matching blood qPCR loads 

  

  

    Positive (N (%)) 135 (94%) 0 (0%) 7 (70%) 48 (36%) 

    Negative (N (%)) 8 (6%) 0 (0%) 3 (30%) 87 (64%) 
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FIGURE LEGENDS 

Figure 1: Median absolute parasite load of cured patients (red line) and relapsed patients (blue line) at 

baseline, day 14, 28 and 56, stratified per treatment arm. Error bars represent the inter-quartile range. 

Grey dashed lines represent end of treatment. 

Figure 2: ROC curves of absolute parasite load as predictor of clinical relapse on day 14, 28, and 56 

of follow-up. AUC represents the integrated area under the ROC curve. Green line: day 14 (AUC 

0.71). Red line: day 28 (AUC 0.74). Blue line: day 56 (AUC 0.92).  

Figure 3: Correlation between log-transformed qPCR blood and tissue parasite load (matching 

ID/timepoint) determined in bone marrow aspirates (red), lymph nodes (green), and spleen aspirates 

(blue). Tissue samples include 4 drops of bone marrow aspirate (~200 µL), or the remainder in the 

needle of the spleen or lymph node aspiration. Data below the limit of quantification are shown as 1 

p/mL. Linear regression line (solid line) is based on the combined data, excluding data below the limit 

of quantification: y = 1.5 + 0.97x.  

Figure 4: Correlation between log-transformed qPCR blood parasite load and grading of amastigotes 

in aspirate smears by microscopy, stratified by parasite load according to tissue source.  

Figure 5: Correlation between log-transformed qPCR tissue parasite load and grading of amastigotes 

in aspirate smears by microscopy, stratified by parasite load according to tissue source. Tissue 

samples include 4 drops of bone marrow aspirate (~200 µL), or the remainder in the needle of the 

spleen or lymph node aspiration. 

Figure 6: Predictive power of blood parasite load is shown for day 28 (left panel) and day 56 (right 

panel), with clinical cure defined as parasite load <=20 p/mL. The difference in cure rate is the 

difference between the alternative treatment regimens (20%, 40%, 60%, or 80% cure rate) and the 

reference treatment regimen (90% cure rate). Sample size ranges from n=10 to n=50. Dotted 

horizontal line represents the 80% power cut-off. 
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Figure 2 
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Figure 4 
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Figure 5 
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Figure 6 
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